Theorem (deviation bound) Same hypotheses as before, and \(p > 4 \). For all \(u, t > 1 \)

\[
\| (I - P_y) \| \leq \left(1 + \frac{24}{p+1} \right) \sigma_{k+1} + t \frac{e^k + p}{p+1} \left(\frac{\epsilon}{2}\sigma_j^2 \right)^{1/6} \\
+ ut \frac{e^k + p}{p+1} \sigma_{k+1}
\]

except with probability at most \(2e^{-t^2/2} \).

For example, set some parameters:

\[
\| (I - P_y) \| \leq \left(1 + \frac{24}{p+1} \right) \log p \sigma_{k+1} \\
+ 3(e^k + p) \left(\frac{\epsilon}{2}\sigma_j^2 \right)^{1/6}
\]

\(\leq \) Frobenius truncation.

To prove this, we need various results regarding Gaussian matrices. Recall, previously we showed that

\[
\| (I - P_y) \| \leq \| \varepsilon_1 \|^2 + \| \varepsilon_2 \varepsilon_2^T \|^2
\]

in this analysis, \(\varepsilon_1, \varepsilon_2 \) are random, and the result comes from analyzing the 2nd term above.

| Example | \(k \) | \(p \) | Error | Prob
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>4</td>
<td>(10^{0.01})</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td>(12^{0.01})</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>8</td>
<td>(23^{0.01})</td>
<td>10^{-7}</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>10</td>
<td>(51^{0.01})</td>
<td>10^{-10}</td>
<td></td>
</tr>
</tbody>
</table>
Probabilistic Error Bounds (worst case scenarios),

i.e. tail bounds.

Thin (deviation bound) Same hypothesis as previous theorem, but also assume \(p > 4 \). Then, for all

\[
\Pr\left(\| (I - P_{u}) A \|_{F} \geq \left(1 + \sqrt{\frac{3k}{p+1}} \right) \left(\frac{1}{2} \sigma_{u} \right) \right) \\
\leq \frac{ut \frac{e^{k+1}}{p+1} \sigma_{u+1}}{2e^{p} + e^{-\frac{1}{2}}}
\]

In order to show this, we need some measure results for Gaussian matrix:

Let \(G \) be \(k \times (kp) \) Gaussian random matrix with

\[
\mathbb{E}[G_{ij}^{2}] = \frac{1}{p} \\
\mathbb{E}[G_{ij}^{4}] = \frac{3}{p^2}
\]

Let \(p > 4 \), and \(t > 1 \), then

\[
\Pr\left(\| G \|_{F} \geq \sqrt{\frac{3k}{p^2} + t} \right) \leq e^{-t'}
\]

\[
\Pr\left(\| G \|_{2} \geq \frac{e^{k+1}}{p+1} + t \right) \leq e^{-t'}
\]

Mutual relationship to singular value, etc.
Proof:

Define \(E_t \) as \(\{ \mathcal{S}_t : \| x_i^+ \|_2 \leq \frac{e^{\sqrt{k+p}}}{p+1} t \quad \text{and} \quad \| x_i^+ \|_F \leq \frac{3k}{p+1} t \} \)

Using the concentration of measure inequality,

\[
P(E_t^c) = P(\| x_i^+ \|_2 > \frac{e^{\sqrt{k+p}}}{p+1} t \quad \text{or} \quad \| x_i^+ \|_F > \frac{3k}{p+1} t) \\
\leq P(\| x_i^+ \|_2 > \frac{e^{\sqrt{k+p}}}{p+1} t) + P(\| x_i^+ \|_F > \frac{3k}{p+1} t) \\
\leq 2t^{-\rho} + t^{-p}
\]

Next, consider \(h(x) = \| \Sigma_2 x \Sigma_i^+ \|_F \):

\[
|h(x) - h(y)| \leq \| \Sigma_2 x \Sigma_i^+ \|_F - \| \Sigma_2 y \Sigma_i^+ \|_F \\
\leq \| \Sigma_2 [(x-y)+y] \Sigma_i^+ \|_F - \| \Sigma_2 y \Sigma_i^+ \|_F \\
\leq \| \Sigma_2 (x-y) \Sigma_i^+ \|_F + \| \Sigma_2 y \Sigma_i^+ \|_F - \| \Sigma_2 y \Sigma_i^+ \|_F \\
\leq \| \Sigma_2 (x-y) \Sigma_i^+ \|_F \\
\leq \| \Sigma_2 \| \| x-y \|_F \| \Sigma_i^+ \|_F \\
\leq \| \Sigma_2 \| \| x-y \|_F \| \Sigma_i^+ \|_F \leq L
\]

Thus, \(h \) is Lipschitz with \(L = \| \Sigma_2 \| \| \Sigma_i^+ \|_F \).
Then
\[E(h(x_2) | x_1) = E(h(x_2 x_1^+ | x_1) \leq \| x_2 \| F \| x_1^+ \| F \| x_1^+ \| \]

Using some known results and conditioning on \(E_t \), we have that
\[P(\| x_2 x_1^+ \| > E(\| x_2 x_1^+ \|) + LU \mid E_t) \leq e^{-u \frac{1}{2}} \]

But
\[P(\| x_2 x_1^+ \| > \| x_2 \| F \| x_1^+ \| F + \| x_2 \| x_1^+ \| u \| E_t) \leq e^{-u \frac{1}{2}} \]

So
\[P(\| x_2 x_1^+ \| > \| x_2 \| F \| x_1^+ \| F + \| x_2 \| x_1^+ \| u \| E_t) \leq e^{-u \frac{1}{2}} \]

But under \(E_t \), we have bounds on \(\| x_2 \| F \) and \(\| x_1^+ \| F \):
\[P(\| x_2 x_1^+ \| > \| x_2 \| F \frac{e^{\frac{k}{p+1}} + \| x_2 \| F \frac{e^{k+\frac{p}{p+1}}} + \| x_2 \| e^{k+\frac{p}{p+1}} u \mid E_t) \leq e^{-u \frac{1}{2}} \]

Likewise,
\[P(\| x_2 x_1^+ \| > \| x_2 \| F x_1^+ \mid E_t) \leq e^{-u \frac{1}{2}} \]

\[P(E_t^c) \leq 2t^p \]

\[\Rightarrow P(\| x_2 x_1^+ \| > x) \leq e^{-u \frac{1}{2} + 2t^p} \]

And note that if \(\| (I-P) \| \) \(\| x_2 \| F \) \(\| x_1^+ \| F \), then
\[\| x_2 x_1^+ \| \leq \| x_2 \| F + \| x_1^+ \| F \]
Application: The SVD + analysis

Let \(A \in \mathbb{R}^{m \times n} \).

Choose \(k = p + k \), and compute a rank-\(k \) approximate SVD via the following algorithm:

1. Draw \(\mathbf{Q} \in \mathbb{R}^{m \times k} \).

2. Compute \(Y = \mathbf{A} \mathbf{Q} \) and then \(Y = QR \).

 Then \(A \approx QQ^\top A \); see previous analysis for error.

3. Set \(B = Q^\top A \in k \times n \).

4. Compute SVD factorization directly (Golub-Kahan, etc.).

 \[
 B = \hat{U} \hat{\Sigma} \hat{V}^\top
 \]

5. Set \(\hat{\Sigma} = \Sigma(1:k, 1:k) \)

 \[
 \hat{U} = Q \hat{U}(1:k, 1:k)
 \]

 \[
 \hat{V} = \hat{V}(1:k)
 \]

6. Then \(A \approx U \hat{\Sigma} V^\top \).

Note: Step 4 is a full SVD, which is then truncated. Not obvious how the terms behave, dependent on quality of \(A \), of course.
Analysis

Let $A \in \mathbb{R}^{m \times m}$ with singular values $\sigma_1, \sigma_2, \ldots$, and let $Y \in \mathbb{R}^{m \times l}$ with $l > k$. (In our case $Y = A\Omega = QR$.) Let $\hat{A}(k)$ be a best rank-k approximation of PA in spectral norm (i.e., Q^TA in our case). Then

$$
\| A - \hat{A}(k) \| \leq \sigma_{k+1} + \| (I - P)A \| .
$$

Note in our case, $\hat{A}(k) = Q\tilde{U}(i,k) \tilde{S}(i,k) \tilde{V}(i,k)^T$

$$
= \text{SVD of } Q^TA .
$$

Proof: By the triangle inequality

$$
\| A - \hat{A}(k) \| \leq \| A - P_yA \| + \| P_yA - \hat{A}(k) \| .
$$

(we've detailed the first term)

To analyze this, let $\hat{A}(k)$ be best rank-k approx of A.

$$
\Rightarrow \| P_yA - \hat{A}(k) \| \leq \| P_yA - \hat{A}(k) \| ,
$$

since $\hat{A}(k)$ was best approx to P_yA.

$$
\Rightarrow \| P_yA - \hat{A}(k) \| \leq \| (I - P_y)(A - \hat{A}(k)) \| \leq \| A - \hat{A}(k) \| = \sigma_{k+1} .
$$
The Power Method

As has been mentioned several times, the performance of the standard randomized range finder scheme can suffer significantly if the singular values of \(A \) decay slowly. The fix is to "basically" apply the algorithm combined with a few iterations of subspace iteration:

Idea: Apply algorithm to \(B = \beta \Theta (A A^*)^q A \)
with \(q \) a small integer.

Note \(B = (U \Sigma V^*)^q U \Sigma V^* \)
\[= (U \Sigma^2 V^*)^q U \Sigma V^* \]
\[= U \Sigma^{2q+1} V^* \]

More rapidly decaying singular values for \(A \)

A stable implementation

1. Choose \(k + p \) / draw \(\Omega \in \mathbb{R}^{n \times k} \)
2. Set \(Y_0 = \Omega \), compute \(Y_0 = Q_0 R_0 \)
3. For \(j = 1, \ldots, q \)
 - Set \(Y_j = A^* Q_{j-1} \), compute \(Y_j = Q_j \hat{R}_j \)
 - Set \(Y_j = A \tilde{Q}_{j-1} \), compute \(Y_j = Q_j \tilde{R}_j \)
4. Set \(Q = Q_q \)
Deterministic Error Bound

Let $A \in \mathbb{R}^{m \times n}$, $\Omega \in \mathbb{R}^{n \times d}$, $q > 0$, $B = (AA^*)^q A$, and $Z = B \Omega$. Then
\[\| (I-P_z) A \| \leq \| (I-P_z) B \| \frac{1}{\sqrt{2^{q+1}}} \]

Proof:
\[\| (I-P_z) A \| \leq \| (I-P_z) (AA^*)^q A \| \frac{1}{\sqrt{2^{q+1}}} = \| (I-P_z) B \| \frac{1}{\sqrt{2^{q+1}}} \]

Because (see Prop 8.6 for details.)

On its face it looks bad because $\| \cdot \|$ might possibly grow (e.g. $\sqrt{0.1} = 1$). But put in context of earlier result:

If $Y = AZ$, then previously we showed:
\[\| (I-P_z) A \| \leq (1 + \| \Omega \|_2^2 \| \Omega \|_2) \frac{1}{\sqrt{2^{q+1}}} \frac{1}{\sqrt{s_{k+1}}} \]

But if $B = (AA^*)^q A$, then $s_{k+1} \rightarrow \infty$ and
\[\| (I-P_z) A \| \leq \| (I-P_z) B \| \frac{1}{\sqrt{2^{q+1}}} \leq \left[\frac{\sqrt{2^{q+1}}}{s_{k+1}} + \| \Omega \|_2^2 \| \Omega \|_2 \| \frac{1}{\sqrt{2^{q+1}}} \right] \frac{1}{\sqrt{s_{k+1}}} \]
\[= \left(1 + \| \Omega \|_2^2 \| \Omega \|_2 \right) \frac{1}{\sqrt{2^{q+1}}} \frac{1}{\sqrt{s_{k+1}}} \]
\[\rightarrow 1 \text{ exponentially fast as } q \rightarrow \infty. \]
Average Case Behavior for Power Scheme.

Corollary Let \(B = (A A^*)^q A \) and \(Z = A \Omega, \quad \Omega \in \mathbb{R}^{n \times k} \)
standard Gaussian test matrix. Then

\[
\mathbb{E}(\| (I - P_2) A \|) \leq \left[(1 + \frac{k}{p+1}) S_{w1}^{2q+1} + \frac{e^{k+p}}{p} \left(\sum_{i=1}^{2} S_{i}^{2q+1} \right)^{1/2} \right]^{1/2q+1}
\]

skip proof...

A more illuminating form:

\[
\mathbb{E}(\| (I - P_2) A \|) \leq \left(1 + \frac{k}{p+1} + \frac{e^{k+p}}{p} \cdot \min(m,n) - k \right) \frac{1}{\sqrt{k+1}} \to 1 \text{ as } q \to \infty.
\]

c.i.e. \(q \text{ as } q \to \log(\min(m,n)) \)

Applications Hierarchical Matrix Compression